
MATLAB® Production Server™
Java® Programming Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ Java® Programming Guide
© COPYRIGHT 2012–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2014 Online only New for Version 1.2 (Release R2014a)
October 2014 Online only Revised for Version 2.0 (Release R2014b)
March 2015 Online only Revised for Version 2.1 (Release R2015a)
September 2015 Online only Revised for Version 2.2 (Release R2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)
September 2018 Online only Revised for Version 4.0 (Release R2018b)
March 2019 Online only Revised for Version 4.1 (Release R2019a)

Client Programming
1

MATLAB Production Server Examples . 1-2

Create a Java MATLAB Production Server Client 1-3

Create a Java Client . 1-4

Unsupported MATLAB Data Types for Client and Server
Marshaling . 1-8

Java Client Programming
2

Java Client Coding Best Practices . 2-2
Static Proxy Interface Guidelines . 2-2
Java Client Prerequisites . 2-2
Manage Client Lifecycle . 2-3
Handling Java Client Exceptions . 2-4
Managing System Resources . 2-4
Where to Find the Javadoc . 2-5

Configure the Client-Server Connection 2-6
Create a Connection with the Default Configuration 2-6
Create a Connection with a Custom Configuration 2-6
Implement a Custom Connection Configuration 2-7

Invoke MATLAB Functions Dynamically 2-9
Create a Proxy for Dynamic Invocation 2-9
Invoke a MATLAB Function Dynamically 2-10
Marshal MATLAB Structures . 2-12

v

Contents

Bond Pricing Tool for Java Client . 2-14
Objectives . 2-14
Step 1: Write MATLAB Code . 2-14
Step 2: Create a Deployable Archive with the Production Server

Compiler App . 2-15
Step 3: Share the Deployable Archive on a Server 2-15
Step 4: Create the Java Client Code 2-16
Step 5: Build the Client Code and Run the Example 2-18

Code Multiple Outputs for Java Client 2-20

Code Variable-Length Inputs and Outputs for Java Client . . . 2-21

Marshal MATLAB Structures (Structs) in Java 2-22
Marshaling a Struct Between Client and Server 2-22

Data Conversion with Java and MATLAB Types 2-30
Working with MATLAB Data Types . 2-30
Scalar Numeric Type Coercion . 2-31
Dimensionality in Java and MATLAB Data Types 2-32
Empty (Zero) Dimensions . 2-34
Boxed Types . 2-35
Signed and Unsigned Types in Java and MATLAB Data Types

. 2-36

Java Client Logging . 2-37
Use the Embedded log4j Engine . 2-37
Use an Existing Logging Engine . 2-38

Security
3

Access Secure Programs Using HTTPS 3-2
Configure the Client’s Environment for SSL 3-2
Establish a Secure Proxy Connection 3-2
Establish a Secure Connection Using Client Authentication . . 3-3

Customize Security Configuration . 3-5
Specify Enabled Encryption Protocols 3-5
Override Default Hostname Verification 3-6

vi Contents

Use Additional Server Authentication 3-7

Data Conversion Rules
A

Conversion of Java Types to MATLAB Types A-2

Conversion of MATLAB Types to Java Types A-3

vii

Client Programming

• “MATLAB Production Server Examples” on page 1-2
• “Create a Java MATLAB Production Server Client” on page 1-3
• “Create a Java Client” on page 1-4
• “Unsupported MATLAB Data Types for Client and Server Marshaling” on page 1-8

1

MATLAB Production Server Examples
Additional Client examples for MATLAB Production Server are available in the client
folder of your MATLAB Production Server.

1 Client Programming

1-2

Create a Java MATLAB Production Server Client
To create a MATLAB Production Server client in Java:

1 Obtain mps_client.jar from $MPS_INSTALL/client.
2 Configure your development environment to use mps_client.jar.
3 Based on your requirements, decide if the client uses a static proxy or a dynamic

proxy.

• A static proxy uses an object implementing an interface that mirrors the deployed
MATLAB functions. You provide the interface for the static proxy.

See “Static Proxy Interface Guidelines” on page 2-2.
• A dynamic proxy creates server requests based on the MATLAB function name

provided to the invoke() method. You provide the function name, the number of
output arguments, and all of the input arguments required to evaluate the
functions.

See “Invoke MATLAB Functions Dynamically” on page 2-9.
4 Write Java code to instantiate a proxy to a MATLAB Production Server instance and

call the MATLAB functions.

a Create an MWClient object for communicating with the service hosted by a
MATLAB Production Server instance.

b Create MATLAB data structures to hold the data passed between the client and
server.

c Invoke MATLAB functions.
d Free system resources using the close method of the MWClient object.

 Create a Java MATLAB Production Server Client

1-3

Create a Java Client
This example shows how to write a MATLAB Production Server client using the Java client
API. In your Java code, you will:

• Define a Java interface that represents the MATLAB function.
• Instantiate a proxy object to communicate with the server.
• Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1 Create a new file called MPSClientExample.java.
2 Using a text editor, open MPSClientExample.java.
3 Add the following import statements to the file:

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

4 Add a Java interface that represents the deployed MATLAB function.

The interface for the addmatrix function

function a = addmatrix(a1, a2)

a = a1 + a2;

looks like this:

interface MATLABAddMatrix {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

When creating the interface, note the following:

• You can give the interface any valid Java name.
• You must give the method defined by this interface the same name as the

deployed MATLAB function.
• The Java method must support the same inputs and outputs supported by the

MATLAB function, in both type and number. For more information about data type

1 Client Programming

1-4

conversions and how to handle more complex MATLAB function signatures, see
“Java Client Programming”.

• The Java method must handle MATLAB exceptions and I/O exceptions.
5 Add the following class definition:

public class MPSClientExample
{
}

This class now has a single main method that calls the generated class.
6 Add the main() method to the application.

public static void main(String[] args)
{
}

7 Add the following code to the top of the main() method:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};

These statements initialize the variables used by the application.
8 Instantiate a client object using the MWHttpClient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the server
instance.

9 Call the client object’s createProxy method to create a dynamic proxy.

You must specify the URL of the deployable archive and the name of your interface
class as arguments:

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);

The URL value ("http://localhost:9910/addmatrix") used to create the proxy
contains three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (addmatrix)

 Create a Java Client

1-5

For more information about the createProxy method, see the Javadoc included in
the $MPS_INSTALL/client folder, where $MPS_INSTALL is the name of your
MATLAB Production Server installation folder.

10 Call the deployed MATLAB function in your Java application by calling the public
method of the interface.

 double[][] result = m.addmatrix(a1,a2);
11 Call the client object’s close() method to free system resources.

client.close();
12 Save the Java file.

The completed Java file should resemble the following:
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix
 {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

public class MPSClientExample {

 public static void main(String[] args){

 double[][] a1={{1,2,3},{3,2,1}};
 double[][] a2={{4,5,6},{6,5,4}};

 MWClient client = new MWHttpClient();

 try{
 MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);
 double[][] result = m.addmatrix(a1,a2);

 // Print the magic square

 printResult(result);

 }catch(MATLABException ex){

 // This exception represents errors in MATLAB
 System.out.println(ex);
 }catch(IOException ex){

 // This exception represents network issues.
 System.out.println(ex);
 }finally{

 client.close();
 }
 }

1 Client Programming

1-6

 private static void printResult(double[][] result){
 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

13 Compile the Java application, using the javac command or use the build capability of
your Java IDE.

For example, enter the following:
javac -classpath "MPS_INSTALL_ROOT\client\java\mps_client.jar" MPSClientExample.java

14 Run the application using the java command or your IDE.

For example, enter the following:
java -classpath .;"MPS_INSTALL_ROOT\client\java\mps_client.jar" MPSClientExample

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

 Create a Java Client

1-7

Unsupported MATLAB Data Types for Client and Server
Marshaling

These data types are not supported for marshaling between MATLAB Production Server
instances and clients:

• MATLAB function handles
• Complex (imaginary) data
• Sparse arrays

1 Client Programming

1-8

Java Client Programming

• “Java Client Coding Best Practices” on page 2-2
• “Configure the Client-Server Connection” on page 2-6
• “Invoke MATLAB Functions Dynamically” on page 2-9
• “Bond Pricing Tool for Java Client” on page 2-14
• “Code Multiple Outputs for Java Client” on page 2-20
• “Code Variable-Length Inputs and Outputs for Java Client” on page 2-21
• “Marshal MATLAB Structures (Structs) in Java” on page 2-22
• “Data Conversion with Java and MATLAB Types” on page 2-30
• “Java Client Logging” on page 2-37

2

Java Client Coding Best Practices

Static Proxy Interface Guidelines
When you write Java interfaces to invoke MATLAB code, remember these considerations:

• The method name exposed by the interface must match the name of the MATLAB
function being deployed.

• The method must have the same number of inputs and outputs as the MATLAB
function.

• The method input and output types must be convertible to and from MATLAB.
• If you are working with MATLAB structures, remember that the field names are case

sensitive and must match in both the MATLAB function and corresponding user-
defined Java type.

• The name of the interface can be any valid Java name.

Java Client Prerequisites
Complete the following steps to prepare your MATLAB Production Server Java
development environment.

1 Install a Java IDE of your choice. Follow instructions on the Oracle Web site for
downloading Java , if needed.

2 Add mps_client.jar (located in $MPS_INSTALL\client\java) to your Java
CLASSPATH and Build Path. This JAR file is sometimes defined in separate GUIs,
depending on your IDE.

Generate one deployable archive into your server’s auto_deploy folder for each
MATLAB application you plan to deploy. For information about creating a deployable
archive with the Production Server Compiler app, see “Create a Deployable Archive
for MATLAB Production Server”.

Your server’s main_config file should point to where your MATLAB Runtime
instance is installed.

3 The server hosting your deployable archive must be running.

2 Java Client Programming

2-2

https://www.oracle.com
https://www.oracle.com/us/technologies/java/index.html

Manage Client Lifecycle
A single Java client connects to one or more servers available at various URLs. Even
though you create multiple instances of MWHttpClient on page 1-3, one instance is
capable of establishing connections with multiple servers.

Proxy objects communicate with the server until the close method of that instance is
invoked.

For a locally scoped instance of MWHttpClient, the Java client code looks like the
following:

Locally Scoped Instance
MWClient client = new MWHttpClient();
try{
 // Code that uses client to communicate with the server
}finally{
 client.close();
}

When using a locally scoped instance of MWHttpClient, tie it to a servlet.

When using a servlet, initialize the MWHttpClient inside the HttpServlet.init()
method, and close it inside the HttpServlet.destroy() method, as in the following
code:

Servlet Implementation
public class MPSServlet extends HttpServlet
{
 private final MWClient client;

 public void init(ServletConfig config) throws ServletException
 {
 client = new MWHttpClient();
 }

 protected void doGet(HttpServletRequest req,HttpServletResponse resp)
 throws ServletException,java.io.IOException
 {
 // Code that uses client to communicate with the server
 }

 Java Client Coding Best Practices

2-3

 public void destroy()
 {
 client.close();
 }
}

Handling Java Client Exceptions
The Java interface must declare checked exceptions for the following errors:

Java Client Exceptions

Exception Reason for Exception Additional Information
com.mathworks.mps.cli
ent.MATLABException

A MATLAB error occurred when a
proxy object method was executed.

The exception provides the
following:

• MATLAB Stack trace
• Error ID
• Error message

java.io.IOException • A network-related failure has
occurred.

• The server returns an HTTP
error of either 4xx or 5xx.

Use java.io.IOException to
handle an HTTP error of 4xx or
5xx in a particular manner.

Managing System Resources
A single Java client connects to one or more servers available at different URLs. Instances
of MWHttpClient can communicate with multiple servers.

All proxy objects, created by an instance of MWHttpClient, communicate with the server
until the close method of MWHttpClient is invoked.

Call close only if you no longer need to communicate with the server and you are ready
to release the system resources. Closing the client terminates connections to all created
proxies.

2 Java Client Programming

2-4

Where to Find the Javadoc
The API doc for the Java client is installed in $MPS_INSTALL/client.

 Java Client Coding Best Practices

2-5

Configure the Client-Server Connection
In this section...
“Create a Connection with the Default Configuration” on page 2-6
“Create a Connection with a Custom Configuration” on page 2-6
“Implement a Custom Connection Configuration” on page 2-7

You configure the client-server connection using an object that implements the
MWHttpClientConfig interface. This interface defines these properties:

• Interruptible determines if MATLAB functions can be interrupted
• TimeOutMs determines the amount of time, in milliseconds, the client waits for a

response before timing out
• MaxConnections - determines the maximum number of connections the client opens

to fulfill multiple requests
• ResponseSizeLimit - determines the maximum size, in bytes, of the response a

client accepts.

The API provides a default implementation, MWHttpClientDefaultConfig, that is
automatically used when an HTTP client is instantiated. To modify the configuration,
extend MWHttpClientDefaultConfig and pass it to the HTTP client constructor.

Create a Connection with the Default Configuration
When you create a client connection using the default constructor, MWHttpClient(), an
instance of MWHttpClientDefaultConfig is automatically used to configure the client-
server connection. The default configuration sets these connection properties:

• Interruptible = false
• TimeOutMs = 120000
• MaxConnections = -1, specifying that the client uses as many connections as the

system allows
• ResponseSizeLimit = 64*1024*1024 (64 MB)

Create a Connection with a Custom Configuration
To change one or more connection properties:

2 Java Client Programming

2-6

1 Implement a custom connection configuration by extending the
MWHttpClientDefaultConfig interface.

2 Create the client connection using one of the constructors that accepts a
configuration object:

• MWHttpClient(MWHttpClientConfig config)
• MWHttpClient(MWHttpClientConfig config, MWSSLConfig sslConfig)

This code sample creates a client connection with a timeout value of 1000 ms:

class MyClientConfig extends MWHttpClientDefaultConfig
{
 public long getTimeOutMs()
 {
 return 1000;
 }
 }
 ...
 MWClient client = new MWHttpClient(new MyClientConfig());
 ...

For information see “Customize Security Configuration” on page 3-5.

Implement a Custom Connection Configuration
To implement a custom connection configuration extend the
MWHttpClientDefaultConfig interface. The MWHttpClientDefaultConfig
interface has one getter method for each configuration property:

• public int getMaxConnectionsPerAddress() returns the value for the
maximum number of connections a client can use to handle simultaneous requests.

• public long getTimeOutMs() returns the number of milliseconds the client will
wait for a response before generating an error.

• public boolean isInterruptible() returns a boolean specifying if the MATLAB
function can be interrupted while waiting for a response.

Note If this method returns false, then getMaxConnectionsPerAddress() must
return -1.

• public int getResponseSizeLimit() returns the maximum number of bytes the
client can accept in a response.

 Configure the Client-Server Connection

2-7

You only need to overrides the getters for properties you wish to change. For example, to
specify that a client times out after 1 s and can accept 4 MB responses, override
getTimeOutMs() and getResponseSizeLimit():

class MyClientConfig extends MWHttpClientDefaultConfig
 {
 public long getTimeOutMs()
 {
 return 60000;
 }
 public int getResponseSizeLimit()
 {
 return 4*1024*1024;
 }
 }

2 Java Client Programming

2-8

Invoke MATLAB Functions Dynamically
In this section...
“Create a Proxy for Dynamic Invocation” on page 2-9
“Invoke a MATLAB Function Dynamically” on page 2-10
“Marshal MATLAB Structures” on page 2-12

To dynamically invoke functions on an MATLAB Production Server instance, you use a
reflection-based proxy to construct the MATLAB function request. The function name and
all of the inputs and outputs are passed as parameters to the method invoking the
request. This means that you do not need to recompile your application every time you
add a function to a deployed archive.

To dynamically invoke a MATLAB function:

1 Instantiate an instance of the MWHttpClient class.
2 Create a reflection-based proxy object using one of the createComponentProxy()

methods of the client connection.
3 Invoke the function using one of the invoke() methods of the reflection-based proxy.

Create a Proxy for Dynamic Invocation
A reflection-based proxy implements the MWInvokable interface and provides methods
that enables you to directly invoke any MATLAB function in a deployable archive. As with
the interface-based proxy, the reflection-based proxy is created from the client connection
object. The MWHttpClient class has two methods for creating a reflection-based proxy:

• MWInvokable createComponentProxy(URL archiveURL) creates a proxy that
uses standard MATLAB data types.

• MWInvokable createComponentProxy(URL archiveURL, MWMarshalingRules
marshalingRules) creates a proxy that uses structures.

To create a reflection-based proxy for invoking functions in the archive myMagic hosted
on your local computer:

MWClient myClient = new MWHttpClient();

URL archiveURL = new URL("http://localhost:9910/myMagic");
MWInvokable myProxy = myClient.createComponentProxy(archiveURL);

 Invoke MATLAB Functions Dynamically

2-9

Invoke a MATLAB Function Dynamically
A reflection-based proxy has three methods for invoking functions on a server:

• Object[] invoke(final String functionName, final int nargout,
final Class<T> targetType, final Object... inputs) invokes a function
that returns nargout values.

• <T> T invoke(final String functionName, final Class<T> targetType,
final Object... inputs) invokes a functions that returns a single value.

• invokeVoid(final String functionName, final Object... inputs)
invokes a function that returns no values.

All methods map to the MATLAB function as follows:

• First argument is the function name
• Middle set of arguments, nargout and targetType, represent the return values of

the function
• Last arguments are the function inputs

Return Multiple Outputs

The MATLAB function myLimits returns two values.

function [myMin,myMax] = myLimits(myRange)
 myMin = min(myRange);
 myMax = max(myRange);
end

To invoke myLimits from a Java client, use the invoke() method that takes the number
of return arguments:

double[] myRange = new double[]{2,5,7,100,0.5};
try
{
 Object[] myLimits = myProxy.invoke("myLimits",
 2,
 Object[].class,
 myRange);
 double myMin = ((Double) myLimits[0]).doubleValue();
 double myMax = ((Double) myLimits[1]).doubleValue();
 System.out.printf("min: %f max: %f",myMin,myMax);
}

2 Java Client Programming

2-10

catch (Throwable e)
{
 e.printStackTrace();
}

Because Java cannot determine the proper types for each of the returned values, this form
of invoke always returns Object[] and always takes Object[].class as the target
type. You must cast the returned values into the proper types.

Return a Single Output

The MATLAB function addmatrix returns a single value.

function a = addmatrix(a1, a2)
a = a1 + a2;

To invoke addmatrix from a Java client, use the invoke() method that does not take
the number of return arguments:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};
try
{
 Double[][] result = myProxy.invoke("addmatrix",
 Double[][].class,
 a1,
 a2);

 for(Double[] row : result)
 {
 for(double element : row)
 {
 System.out.print(element + " ");
 }
 }
} catch (Throwable e)
{
 e.printStackTrace();
}

Return No Outputs

The MATLAB function foo does not return value.

 Invoke MATLAB Functions Dynamically

2-11

function foo(a1)
min(a1);

To invoke foo from a Java client, use the invokeVoid() method:

double[][] a={{1,2,3},{3,2,1}};
try
{
 myProxy.invokeVoid("foo", (Object)a);
}
catch (Throwable e)
{
 e.printStackTrace();
}

Marshal MATLAB Structures
If any MATLAB function in a deployable archive uses structures, you need to provide
marshaling rules to the reflection-based proxy. To provide marshaling rules to the proxy:

1 Implement a new set of marshaling rules by extending the
MWDefaultMarshalingRules interface to use a list of the classes being marshalled.

2 Create the proxy using the createComponentProxy(URL archiveURL,
MWMarshalingRules marshalingRules) method.

The deployable archive studentChecker includes functions that use a MATLAB
structure of the form

S =
name: 'Ed Plum'
score: 83
grade: 'B+'

Java client code represents the MATLAB structure with a class named Student. To create
a marshalling rule for dynamically invoking the functions in studentChecker, create a
class named studentMarshaller.

class studentMarshaller extends MWDefaultMarshalingRules
{
 public List<Class> getStructTypes() {
 List structType = new ArrayList<Class>();
 structType.add(Student.class);
 return structType;

2 Java Client Programming

2-12

 }
}

Create the proxy for studentChecker by passing studentMarshaller to
createComponentProxy().

URL archiveURL = new URL("http://localhost:9910/studentCheck");
myProxy = myClient.createComponentProxy(archiveURL,
 new StudentMarshaller());

For more information about using MATLAB structures, see “Marshal MATLAB Structures
(Structs) in Java” on page 2-22.

 Invoke MATLAB Functions Dynamically

2-13

Bond Pricing Tool for Java Client
This example shows an application that calculates a bond price from a simple formula.

You run this example by entering the following known values into a simple graphical
interface:

• Coupon payment — C
• Number of payments — N
• Interest rate — i
• Value of bond or option at maturity — M

The application calculates price (P) based on the following equation:

P = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N

Objectives
The Bond Pricing Tool demonstrates the following features of MATLAB Production Server:

• Deploying a simple MATLAB function with a fixed number of inputs and a single
output

• Deploying a MATLAB function with a simple GUI front-end for data input
• Using dispose() to free system resources

Step 1: Write MATLAB Code
Implement the Bond Pricing Tool in MATLAB, by writing the following code. Name the
code pricecalc.m.

Sample code is available in MPS_INSTALL\client\java\examples
\BondPricingTool\MATLAB.

function price = pricecalc(value_at_maturity, coupon_payment,...
 interest_rate, num_payments)

 C = coupon_payment;
 N = num_payments;
 i = interest_rate;

2 Java Client Programming

2-14

 M = value_at_maturity;

 price = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N;

end

Step 2: Create a Deployable Archive with the Production
Server Compiler App
To create the deployable archive for this example:

1 From MATLAB, select the Production Server Compiler App.
2 In the Application Type list, select Deployable Archive.
3 In the Exported Functions field, add pricecalc.m.

pricecalc.m is located in MPS_INSTALL\client\java\examples
\BondPricingTool\MATLAB.

4 Under Application Information, change pricecalc to BondTools.
5 Click Package.

The generated deployable archive, BondTools.ctf is located in the
for_redistribution_files_only of the project’s folder.

Step 3: Share the Deployable Archive on a Server
1 Download the MATLAB Runtime, if needed, at https://www.mathworks.com/products/

compiler/mcr. See “Download and Install the MATLAB Runtime” for more
information.

2 Create a server using mps-new. See “Create a Server” for more information.
3 If you have not already done so, specify the location of the MATLAB Runtime to the

server by editing the server configuration file, main_config and specifying a path
for --mcr-root. See “Edit the Configuration File” for details.

4 “Start a Server Instance” and “Verify Server Status”.
5 Copy the BondTools.ctf file to the auto_deploy folder on the server for hosting.

 Bond Pricing Tool for Java Client

2-15

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

Step 4: Create the Java Client Code
Create a compatible client interface and define methods in Java to match MATLAB
function pricecalc.m, hosted by the server as BondTools.ctf, using the guidelines in
this section.

Additional Java files are also included that are typical of a standalone application. You can
find the example files in MPS_INSTALL\client\java\examples\BondPricingTool
\Java.

This Java code... Provides this functionality...
BondPricingTool.java Runs the calculator application. The variable

values of the pricing function are declared in this
class.

BondTools.java Defines pricecalc method interface, which is
later used to connect to a server to invoke
pricecalc.m

BondToolsFactory.java Factory that creates new instances of
BondTools

BondToolsStub.java Java class that implements a dummy pricecalc
Java method. Creating a stub method is a
technique that allows for calculations and
processing to be added to the application at a
later time.

BondToolsStubFactory.java Factory that returns new instances of
BondToolsStub

RequestSpeedMeter.java Displays a GUI interface and accepts inputs
using Java Swing classes

ServerBondToolsFactory.java Factory that creates new instances of
MWHttpClient and creates a proxy that
provides an implementation of the BondTools
interface and allows access to pricecalc.m,
hosted by the server

When developing your Java code, note the following essential tasks, described in the
sections that follow. For more information about clients coding basics and best practices,
see “Java Client Coding Best Practices” on page 2-2.

2 Java Client Programming

2-16

This documentation references specific portions of the client code. You can find the
complete Java client code in MPS_INSTALL\client\java\examples
\BondPricingTool\Java.

Declare Java Method Signatures Compatible with MATLAB Functions You Deploy

To use the MATLAB functions you defined in “Step 1: Write MATLAB Code” on page 2-14,
declare the corresponding Java method signature in the interface BondTools.java:

interface BondTools {
 double pricecalc (double faceValue,
 double couponYield,
 double interestRate,
 double numPayments)
 throws IOException, MATLABException;
}

This interface creates an array of primitive double types, corresponding to the MATLAB
primitive types (Double, in MATLAB, unless explicitly declared) in pricecalc.m. A one
to one mapping exists between the input arguments in both the MATLAB function and the
Java interface The interface specifies compatible type double. This compliance between
the MATLAB and Java signatures demonstrates the guidelines listed in “Java Client
Coding Best Practices” on page 2-2.

Instantiate MWClient, Create Proxy, and Specify Deployable Archive

In the ServerBondToolsFactory class, perform a typical MATLAB Production Server
client setup:

1 Instantiate MWClient with an instance of MWHttpClient:
...
 private final MWClient client = new MWHttpClient();

2 Call createProxy on the new client instance. Specify port number (9910) and the
deployable archive name (BondTools) the server is hosting in the auto_deploy
folder:
...
public BondTools newInstance () throws Exception
{
 mpsUrl = new URL("http://user1.dhcp.mathworks.com:9910/BondTools");
 return client.createProxy(mpsUrl, BondTools.class);
}
...

 Bond Pricing Tool for Java Client

2-17

Use dispose() Consistently to Free System Resources

This application makes use of the Factory pattern to encapsulate creation of several types
of objects.

Any time you create objects—and therefore allocate resources—ensure you free those
resources using dispose().

For example, note that in ServerBondToolsFactory.java, you dispose of the
MWHttpClient instance you created in “Instantiate MWClient, Create Proxy, and Specify
Deployable Archive” on page 2-17 when it is no longer needed.

Additionally, note the dispose() calls to clean up the factories in
BondToolsStubFactory.java and BondTools.java.

Step 5: Build the Client Code and Run the Example
Before you attempt to build and run your client code, ensure that you have done the
following:

• Added mps_client.jar ($MPS_INSTALL\client\java) to your Java CLASSPATH
and Build Path.

• Copied your deployable archive to your server’s auto_deploy folder.
• Modified your server’s main_config file to point to where your MATLAB Runtime is

installed.
• “Start a Server Instance” and “Verify Server Status”.

When you run the calculator application, you should see the following output:

2 Java Client Programming

2-18

 Bond Pricing Tool for Java Client

2-19

Code Multiple Outputs for Java Client
MATLAB allows users to write functions that return multiple outputs.

For example, consider this MATLAB function signature:

function [out_double_array, out_char_array] =
 multipleOutputs (in1_double_array, in2_char_array)

In the MATLAB signature, multipleOutputs has two outputs (out_double_array and
out_char_array) and two inputs (in1_double_array and a in2_char_array,
respectively)—a double array and a char array.

In order to call this function from Java, the interface in the client program must specify
the number of outputs of the function as part of the function signature.

The number of expected output parameters in defined as type integer (int) and is the
first input parameter in the function.

In this case, the matching signature in Java is:

public Object[] multipleOutputs(int num_args, double[]
 in1Double, String in2Char);

where num_args specifies number of output arguments returned by the function. All
output parameters are returned inside an array of type Object.

Note When coding multiple outputs, if you pass an integer as the first input argument
through a MATLAB function, you must wrap the integer in a java.lang.Integer object.

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the Java method signature using the name
multipleOutputs. Both signatures define two inputs and two outputs.

• MATLAB Java interface supports direct conversion from Java double array to MATLAB
double array and from Java string to MATLAB char array. For more information, see
“Conversion of Java Types to MATLAB Types” on page A-2 and “Conversion of
MATLAB Types to Java Types” on page A-3.

For more information, see “Java Client Coding Best Practices” on page 2-2.

2 Java Client Programming

2-20

Code Variable-Length Inputs and Outputs for Java Client
MATLAB supports functions with both variable number of input arguments (varargin)
and variable number of output arguments (varargout).

MATLAB Production Server Java client supports the ability to work with variable-length
inputs (varargin) and outputs (varargout). varargin supports one or more of any
data type supported by MATLAB. See the MATLAB Function Reference for complete
information on varargin and varargout.

For example, consider this MATLAB function:

function varargout = vararginout(double1, char2, varargin)

In this example, the first input is type double (double1) and the second input type is a
char (char2). The third input is a variable-length array that can contain zero, or one or
more input parameters of valid MATLAB data types.

The corresponding client method signature must include the same number of output
arguments as the first input to the Java method.

Therefore, the Java method signature supported by MATLAB Production Server Java
client, for the varargout MATLAB function, is as follows:
public Object[] vararginout(int nargout, double in1, String in2, Object... vararg);

In the vararginout method signature, you specify equivalent Java types for in1 and
in2.

The variable number of input parameters is specified in Java as Object... vararg.

The variable number of output parameters is specified in Java as return type Object[].

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the Java method signature using the name
vararginout. Both signatures define two inputs and two outputs.

• MATLAB Java interface supports direct conversion from Java double array to MATLAB
double array and from Java string to MATLAB char array. For more information, see
“Conversion of Java Types to MATLAB Types” on page A-2 and “Conversion of
MATLAB Types to Java Types” on page A-3.

 Code Variable-Length Inputs and Outputs for Java Client

2-21

Marshal MATLAB Structures (Structs) in Java
Structures (or structs) are MATLAB arrays with elements accessed by textual field
designators.

Structs consist of data containers, called fields. Each field stores an array of some
MATLAB data type. Every field has a unique name.

A field in a structure can have a value compatible with any MATLAB data type, including a
cell array or another structure.

In MATLAB, a structure is created as follows:

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

This code creates a scalar structure (S) with three fields:

S =
 name: 'Ed Plum'
 score: 83
 grade: 'B+'

A multidimensional structure array can be created by inserting additional elements:

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

In this case, a structure array of dimensions (1,2) is created. Structs with additional
dimensions are also supported.

Since Java does not natively support MATLAB structures, marshaling structs between the
server and client involves additional coding.

Marshaling a Struct Between Client and Server
MATLAB structures are ordered lists of name-value pairs. You represent them in Java with
a class using fields consisting of the same case-sensitive names.

2 Java Client Programming

2-22

The Java class must also have public get and set methods defined for each field.
Whether or not the class needs both get and set methods depends on whether it is being
used as input or output, or both.

Following is a simple example of how a MATLAB structure can be marshaled between
Java client and server.

In this example, MATLAB function sortstudents takes in an array of structures (see
“Marshal MATLAB Structures (Structs) in Java” on page 2-22 for details).

Each element in the struct array represents different information about a student.
sortstudents sorts the input array in ascending order by score of each student, as
follows:
function sorted = sortstudents(unsorted)
% Receive a vector of students as input
% Get scores of all the students
scores = {unsorted.score};
% Convert the cell array containing scores into a numeric array or doubles
scores = cell2mat(scores);
% Sort the scores array
[s i] = sort(scores);
% Sort the students array based on the sorted scores array
sorted = unsorted(i);

Note Even though this example only uses the scores field of the input structure, you
can also work with name and grade fields in a similar manner.

You package sortstudents into a deployable archive (scoresorter.ctf) using the
Production Server Compiler app (see “Create a Deployable Archive for MATLAB
Production Server” for details) and make it available on the server at http://
localhost:9910/scoresorter for access by the Java client (see “Share the
Deployable Archive”).

Before defining the Java interface required by the client, define the MATLAB structure,
Student, using a Java class.

Student declares the fields name, score and grade with appropriate types. It also
contains public get and set functions to access these fields.

Java Class Student
public class Student{

 Marshal MATLAB Structures (Structs) in Java

2-23

 private String name;
 private int score;
 private String grade;

 public Student(){
 }

 public Student(String name, int score, String grade){
 this.name = name;
 this.score = score;
 this.grade = grade;
 }

 public String getName(){
 return name;
 }

 public void setName(String name){
 this.name = name;
 }

 public int getScore(){
 return score;
 }

 public void setScore(int score){
 this.score = score;
 }

 public String getGrade(){
 return grade;
 }

 public void setGrade(String grade){
 this.grade = grade;
 }

 public String toString(){
 return "Student:\n\tname : " + name +
 "\n\tscore : " + score + "\n\tgrade : " + grade;
 }
}

2 Java Client Programming

2-24

Note Note that this example uses the toString method for marshaling convenience. It
is not required.

Next, define the Java interface StudentSorter, which calls method sortstudents and
uses the Student class to marshal inputs and outputs.

Since you are working with a struct type, Student must be included in the annotation
MWStructureList .

interface StudentSorter {
 @MWStructureList({Student.class})
 Student[] sortstudents(Student[] students)
 throws IOException, MATLABException;
}

Finally, you write the Java application (MPSClientExample) for the client:

1 Create MWHttpClient and associated proxy (using createProxy) as shown in
“Create a Java Client” on page 1-4.

2 Create an unsorted student struct array in Java that mimics the MATLAB struct in
naming, number of inputs and outputs, and type validity in MATLAB. See “Java Client
Coding Best Practices” on page 2-2 for more information.

3 Sort the student array and display it.

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;
import com.mathworks.mps.client.annotations.MWStructureList;

interface StudentSorter {
 @MWStructureList({Student.class})
 Student[] sortstudents(Student[] students)
 throws IOException, MATLABException;
}

public class ClientExample {

 public static void main(String[] args){

 MWClient client = new MWHttpClient();
 try{
 StudentSorter s =
 client.createProxy(new URL("http://localhost:9910/scoresorter"),
 StudentSorter.class);
 Student[] students = new Student[]{new Student("Toni Miller", 90, "A"),

 Marshal MATLAB Structures (Structs) in Java

2-25

 new Student("Ed Plum", 80, "B+"),
 new Student("Mark Jones", 85, "A-")};
 Student[] sorted = s.sortstudents(students);
 System.out.println("Student list sorted in the
 ascending order of scores : ");
 for(Student st:sorted){
 System.out.println(st);
 }
 }catch(IOException ex){
 System.out.println(ex);
 }catch(MATLABException ex){
 System.out.println(ex);
 }finally{
 client.close();
 }
 }
}

Map Java Field Names to MATLAB Field Names

Java classes that represent MATLAB structures use the Java Beans Introspector class
(https://docs.oracle.com/javase/6/docs/api/java/beans/Introspector.html) to map properties
to fields and its default naming conventions are used.

This means that by default its decapitalize() method is used. This maps the first letter
of a Java field into a lower case letter. By default, it is not possible to define a Java field
which will map to a MATLAB field which starts with an upper case.

You can override this behavior by implementing a BeanInfo class with a custom
getPropertyDescriptors() method. For example:

import java.beans.IntrospectionException;
import java.beans.PropertyDescriptor;
import java.beans.SimpleBeanInfo;
public class StudentBeanInfo extends SimpleBeanInfo
{
 @Override
 public PropertyDescriptor[] getPropertyDescriptors()
 {
 PropertyDescriptor[] props = new PropertyDescriptor[3];
 try
 {
 // name uses default naming conventions so we do not need to
 // explicitly specify the accessor names.
 props[0] = new PropertyDescriptor("name",MyStruct.class);
 // score uses default naming conventions so we do not need to
 // explicitly specify the accessor names.
 props[1] = new PropertyDescriptor("score",MyStruct.class);

2 Java Client Programming

2-26

https://docs.oracle.com/javase/6/docs/api/java/beans/Introspector.html

 // Grade uses a custom naming convention so we do need to
 // explicitly specify the accessor names.
 props[1] = new PropertyDescriptor("Grade",MyStruct.class,
 "getGrade","setGrade");
 return props;
 }
 catch (IntrospectionException e)
 {
 e.printStackTrace();
 }

 return null;
 }
}

Defining MATLAB Structures Only Used as Inputs

When defining Java structs as inputs, follow these guidelines:

• Ensure that the fields in the Java class match the field names in the MATLAB struct
exactly. The field names are case sensitive.

• Use public get methods on the fields in the Java class. Whether or not the class
needs both get and set methods for the fields depends on whether it is being used as
input or output or both. In this example, note that when student is passed as an input
to method sortstudents, only the get methods for its fields are used by the data
marshaling algorithm.

As a result, if a Java class is defined for a MATLAB structure that is only used as an input
value, the set methods are not required. This version of the Student class only
represents input values:

public class Student{

 private String name;
 private int score;
 private String grade;

 public Student(String name, int score, String grade){
 this.name = name;
 this.score = score;
 this.grade = grade;
 }

 public String getName(){

 Marshal MATLAB Structures (Structs) in Java

2-27

 return name;
 }

 public int getScore(){
 return score;
 }

 public String getGrade(){
 return grade;
 }
}

Defining MATLAB Structures Only Used as an Output

When defining Java structs as outputs, follow these guidelines:

• Ensure that the fields in the Java class match the field names in the MATLAB struct
exactly. The field names are case sensitive.

• Create a new instance of the Java class using the structure received from MATLAB. Do
so by using set methods or @ConstructorProperties annotation provided by Java.
get methods are not required for a Java class when defining output-only MATLAB
structures.

An output-only Student class using set methods follows:

public class Student{

 private String name;
 private int score;
 private String grade;

 public void setName(String name){
 this.name = name;
 }

 public void setScore(int score){
 this.score = score;
 }

 public void setGrade(String grade){
 this.grade = grade;
 }
}

2 Java Client Programming

2-28

An output-only Student class using @ConstructorProperties follows:

public class Student{

 private String name;
 private int score;
 private String grade;

 @ConstructorProperties({"name","score","grade"})
 public Student(String n, int s, String g){
 this.name = n;
 this.score = s;
 this.grade = g;
 }
}

Note If both set methods and @ConstructorProperties annotation are provided, set
methods take precedence over @ConstructorProperties annotation.

Defining MATLAB Structures Used as Both Inputs and Outputs

If the Student class is used as both an input and output, you need to provide get
methods to perform marshaling to MATLAB. For marshaling from MATLAB, use set
methods or @ConstructorProperties annotation on page 2-28.

 Marshal MATLAB Structures (Structs) in Java

2-29

Data Conversion with Java and MATLAB Types

Working with MATLAB Data Types
There are many data types that you can work with in MATLAB. Each of these data types is
in the form of a matrix or array. You can build matrices and arrays of floating-point and
integer data, characters and strings, and logical true and false states. Structures and cell
arrays provide a way to store dissimilar types of data in the same array.

All of the fundamental MATLAB classes are circled in the diagram “Fundamental MATLAB
Data Types” on page 2-31.

The Java client follows Java-MATLAB-Interface (JMI) rules for data marshaling. It expands
those rules for scalar Java boxed types, allowing auto-boxing and un-boxing, which JMI
does not support.

Note Function Handles are not supported by MATLAB Production Server.

2 Java Client Programming

2-30

Fundamental MATLAB Data Types

The expected conversion results for Java to MATLAB types are listed in “Conversion of
Java Types to MATLAB Types” on page A-2. The expected conversion results for
MATLAB to Java types are listed in “Conversion of MATLAB Types to Java Types” on page
A-3.

Scalar Numeric Type Coercion
Scalar numeric MATLAB types can be assigned to multiple Java numeric types as long as
there is no loss of data or precision.

The main exception to this rule is that MATLAB double scalar data can be mapped into
any Java numeric type. Because double is the default numeric type in MATLAB, this

 Data Conversion with Java and MATLAB Types

2-31

exception provides more flexibility to the users of MATLAB Production Server Java client
API.

MATLAB to Java Numeric Type Compatibility describes the type compatibility for scalar
numeric coercion.

MATLAB to Java Numeric Type Compatibility

MATLAB Type Java Types
uint8 short, int, long, float, double
int8 short, int, long, float, double
uint16 int, long, float, double
int16 int, long, float, double
uint32 long, float, double
int32 long, float, double
uint64 float, double
int64 float, double
single double
double byte, short, int, long, float

Dimensionality in Java and MATLAB Data Types
In MATLAB, dimensionality is an attribute of the fundamental types and does not add to
the number of types as it does in Java.

In Java, double, double[] and double[][][] are three different data types. In
MATLAB, there is only a double data type and possibly a scalar instance, a vector
instance, or a multi-dimensional instance.

Java Signature Value Returned from MATLAB
double[][][] foo() ones(1,2,3)

Dimension Coercion

How you define your MATLAB function and corresponding Java method signature
determines if your output data will be coerced, using padding or truncation.

2 Java Client Programming

2-32

This coercion is automatically performed for you. This section describes the rules
followed for padding and truncation.

Padding

When a Java method's return type has more dimensions than MATLAB’s, MATLAB's
dimensions are be padded with ones (1s) to match the required number of output
dimensions in Java.

You, as a developer, do not have to do anything to pad dimensions.

The following tables provide examples of how padding is performed for you:

How MATLAB Pads Your Java Method Return Type

When Dimensions in
MATLAB are:

And Dimensions in
Java are:

This Type in Java: Returns this Type in
MATLAB:

size(a) is[2,3] Array will be returned
as size 2,3,1,1

double [][][][]
foo()

function a = foo a
= ones(2,3);

Padding Dimensions in MATLAB and Java Data Conversion

MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions
2 x 3 double[][][] 2 x 3 x 1
2 x 3 double[][][][] 2 x 3 x 1 x 1

Truncation

When a Java method's return type has fewer dimensions than MATLAB’s, MATLAB’s
dimensions are truncated to match the required number of output dimensions in Java.
This is only possible when extra dimensions for MATLAB array have values of ones (1s)
only.

To compute appropriate number of dimensions in Java, excess ones are truncated, in this
order:

1 From the end of the array
2 From the array’s beginning
3 From the middle of the array (scanning front-to-back).

You, as a developer, do not have to do anything to truncate dimensions.

 Data Conversion with Java and MATLAB Types

2-33

The following tables provide examples of how truncation is performed for you:

How MATLAB Truncates Your Java Method Return Type

When Dimensions in
MATLAB are:

And Dimensions in
Java are:

This Type in Java: Returns this Type in
MATLAB

size(a) is
[1,2,1,1,3,1]

Array will be returned
as size 2,3

double [][] foo() function a = foo a
=
ones(1,2,1,1,3,1);

Following are some examples of dimension shortening using the double numeric type:

Truncating Dimensions in MATLAB and Java Data Conversion

MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions
1 x 1 double 0
2 x 1 double[] 2
1 x 2 double[] 2
2 x 3 x 1 double[][] 2 x 3
1 x 3 x 4 double[][] 3 x 4
1 x 3 x 4 x 1 x 1 double[][][] 1 x 3 x 4
1 x 3 x 1 x 1 x 2 x 1 x
4 x 1

double[][][][] 3 x 2 x 1 x 4

Empty (Zero) Dimensions
Passing arrays of zero (0) dimensions (sometimes called empties) results in an empty
matrix from MATLAB.

Java Signature Value Returned from MATLAB
double[] foo() []

Passing Java Empties to MATLAB

When a null is passed from Java to MATLAB, it will always be marshaled into [] in
MATLAB as a zero by zero (0 x 0) double. This is independent of the declared input type
used in Java. For example, all the following methods can accept null as an input value:

2 Java Client Programming

2-34

void foo(String input);
void foo(double[] input);
void foo(double[][] input);
void foo(Double input);

And in MATLAB, null will be received as:

[] i.e. 0x0 double

Passing MATLAB Empties to Java

An empty array in MATLAB has at least one zero (0) assigned in at least one dimension.
For function a = foo, for example, any one of the following values is acceptable:

 a = [];
 a = ones(0);
 a = ones(0,0);
 a = ones(1,2,0,3);

Empty MATLAB data will be returned to Java as null for all the above cases.

For example, in Java, the following signatures return null when a MATLAB function
returns an empty array:

double[] foo();
double[][] foo();
Double foo();

However, when MATLAB returns an empty array and the return type in Java is a scalar
primitive (as with double foo();, for example) an exception is thrown . :

IllegalArgumentException
("An empty MATLAB array cannot be represented by a
 primitive scalar Java type")

Boxed Types
Boxed Types are used to wrap opaque C structures.

Java client will perform primitive to boxed type conversion if boxed types are used as
return types in the Java method signature.

 Data Conversion with Java and MATLAB Types

2-35

Java Signature Value Returned from MATLAB
Double foo() 1.0

For example, the following method signatures work interchangeably:

double[] foo(); Double[] foo();
double[][][] foo(); Double[][][] foo();

Signed and Unsigned Types in Java and MATLAB Data Types
Numeric classes in MATLAB include signed and unsigned integers. Java does not have
unsigned types.

2 Java Client Programming

2-36

Java Client Logging
Logging capability is available in the Java client to record details such as HTTP request
statuses, server URLs, and output data. Logging is implemented using the slf4j, so it
can work with multiple logging engines, such as log4j, logback, or
java.util.logging.

It can utilize the logging engine used in your project, from one of the slf4j supported
engines, or load its own embedded engine if none is provided.

Use the Embedded log4j Engine
When your project does not use a logging engine, and you want to log just the Java client
activity, you can activate the Java client embedded log4j engine it can use once
activated. To use the embedded engine, pass in a log4j configuration file to the Java
application at startup. To do this, add the file location URL to the
log4j.configuration JVM property. The URL to a file on the file system is:

file:/path/to/file/filename

 Java Client Logging

2-37

The embedded engine is loaded only if no engine is provided.

The default log4j configuration file that outputs to standard out is found at the following
location: $MPS_INSTALL/client/java/log4j.properties.

Example (UNIX® syntax):

 java -cp ./mps_client.jar:./Magic.jar -Dlog4j.configuration=file:/$MPS_INSTALL/client/java/log4j.properties Magic

Use an Existing Logging Engine
If your project uses an existing engine, the Java client can use that engine for logging.
Your project can use any engine that supports slf4j. To use an existing engine, you must
be able to load it into your Java application, and it must be on your Java classpath. If you
need different version of the slf4j engine, you can load your own slf4j library and
include it in your classpath.

For java.util.logging, you need to load and use the java.util.logging.Logger
class in your Java application code before the
com.mathworks.mps.client.MWHttpClient class is loaded.

For logback, add both the logback-classic and logback-core jar files onto the
classpath.

If you encounter version mismatch issues between your engine and slf4j, it is best to
load your own slf4j-api.jar of the appropriate version by setting it on the Java
classpath. This situation can occur if you are using later versions of logback.

Example (UNIX syntax):

#Using existing log4j engine
java -cp ./log4j.jar:./mps_client.jar:./MyApplication.jar -Dlog4j.configuration=file:/path/to/log4j.properties MainClass

#Using existing logback engine
java -cp ./logback-classic.jar:./logback-core.jar:./mps_client.jar:./MyApplication.jar -Dlogback.configurationFile=/path/to/config.xml MainClass

#Using existing slf4j API
java -cp ./slf4j-api.jar:./mps_client.jar:./MyApplication.jar MainClass

#Using existing logback engine with existing slf4j
java -cp ./slf4j-api.jar:./logback-classic.jar:./logback-core.jar:./mps_client.jar:./MyApplication.jar -Dlogback.configurationFile=/path/to/config.xml MainClass

2 Java Client Programming

2-38

Refer to the third-party logging engine documentation for more information on how to
configure the logging behavior.

Note If loading existing slf4j or logback jars, it must be set in front of the
mps_client.jar on the Java classpath.

See Also

 See Also

2-39

Security

• “Access Secure Programs Using HTTPS” on page 3-2
• “Customize Security Configuration” on page 3-5

3

Access Secure Programs Using HTTPS

In this section...
“Configure the Client’s Environment for SSL” on page 3-2
“Establish a Secure Proxy Connection” on page 3-2
“Establish a Secure Connection Using Client Authentication” on page 3-3

Connecting to a MATLAB Production Server instance over HTTPS provides a secure
channel for executing MATLAB functions. To establish an HTTPS connection with a
MATLAB Production Server instance:

1 Ensure that the server is configured to use HTTPS.
2 Install the required credentials on the client system.
3 Configure the client's Java environment to use the credentials.
4 Create the program proxy using the program's https:// URL.

MATLAB Production Server Java client API provides:

• Hooks for disabling security protocols to protect against the POODLE vulnerability.
• Hooks for providing your own HostnameVerifier implementation
• Hooks for implementing server authorization beyond that provided by HTTPS

Configure the Client’s Environment for SSL
To manage the key store and trust stores on the client machine, use keytool.

At a minimum, the client requires the server's root CA (Certificate Authority) in its trust
store.

To connect to a server that requires client-side authentication, the client also needs a
signed certificate in its key store.

Establish a Secure Proxy Connection
Create a secure proxy connection with a MATLAB Production Server instance by using
the https:// URL for the desired program:

3 Security

3-2

MWClient client = new MWHttpClient();
URL sslURL = new URL("https://hostname:port/myArchive");
MyProxy sslProxy = client.createProxy(sslURL, MyProxy.class);

The sslProxy object uses the default Java trust store, stored in JAVA_HOME\lib
\security\cacerts, to perform the HTTPS server authentication. If the server
requests client authentication, the HTTPS handshake fails because the default
SSLContext object created by the JRE does not provide a key store.

To use a location other than the default for the client trust store, set the trust store
location and password using Java system properties:

System.setProperty("javax.net.ssl.trustStore",
 "PATH_TO_TRUSTSTORE");
System.setProperty("javax.net.ssl.trustStorePassword",
 "truststore_pass");
MWClient client = new MWHttpClient();
URL sslURL = new URL("https://hostname:port/myfun");
MyProxy sslProxy = client.createProxy(sslURL, MyProxy.class);

You must provide a custom implementation of the MWSSLConfig interface to use a
custom SSLContext implementation, add a custom HostnameVerifier implementation,
or use the server authorization of the MATLAB Production Server Java client API.

Establish a Secure Connection Using Client Authentication
In some environments, server instances require that clients provide a certificate for
authentication. To enable the client to connect with a server instance requiring client
authentication, set the key store location and password using Java system properties:

System.setProperty("javax.net.ssl.keyStore", "PATH_TO_KEYSTORE");
System.setProperty("javax.net.ssl.keyStorePassword", "keystore_pass");
MWClient client = new MWHttpClient();
URL sslURL = new URL("https://hostname:port/myfun");
MyProxy sslProxy = client.createProxy(sslURL, MyProxy.class);

 Access Secure Programs Using HTTPS

3-3

See Also

More About
• “Customize Security Configuration” on page 3-5

External Websites
• Oracle's keytool documentation

3 Security

3-4

https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Customize Security Configuration
In this section...
“Specify Enabled Encryption Protocols” on page 3-5
“Override Default Hostname Verification” on page 3-6
“Use Additional Server Authentication” on page 3-7

The MWSSLConfig object provides information to configure HTTPS. The Java client API
provides a default MWSSLConfig implementation, MWSSLDefaultConfig, which it uses
when no SSL configuration is passed to the MWHTTPClient constructor. The
MWSSLDefaultConfig object is implemented such that:

• getSSLContext() returns the default SSLContext object created by the JRE.
• getHostnameVerifier() returns a HostnameVerifier implementation that

always returns false. If the HTTPS hostname verification fails, this does not override
the decision.

• getServerAuthorizer() returns a MWSSLServerAuthorizer implementation that
authorizes all MATLAB Production Server instances.

You extend the MWSSLDefaultConfig class to:

• specify the security protocols the client can use
• customize how the client verifies hostnames
• specify additional server authentication logic

The MWSSLDefaultConfig class has three methods:

• getSSLContext() — Returns the SSLContext object
• getHostnameVerifier() — Returns a HostnameVerifier object to use if HTTPS

hostname verification fails
• getServerAuthorizer() — Returns a MWSSLServerAuthorizer object to perform

server authorization based on the server certificate

Specify Enabled Encryption Protocols
MATLAB Production Server supports the following encryption protocols:

 Customize Security Configuration

3-5

• TLSv1.0
• TLSv1.1
• TLSv1.2
• SSLv3.0
• SSLv2.0.

By default, all protocols are enabled. If you want to control which protocols are enabled,
you override the getSSLContext() method to return an instance of
MWCustomSSLContext with a list of enabled protocols. Protocols not on the list are not
enabled. For example, to avoid the POODLE vulnerability by disabling SSL protocols, you
enable the TLS protocols.

import javax.net.ssl.SSLContext;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import com.mathworks.mps.client.*;

public class MySSLConfig extends MWSSLDefaultConfig
{
 public SSLContext getSSLContext()
 {
 try
 {
 final SSLContext context = MWCustomSSLContext.getInstance("TLSv1", "TLSv1.1", "TLSv1.2");
 context.init(null,null,null);
 return context;
 }
 catch (NoSuchAlgorithmException e)
 {
 return null;
 }
 catch (KeyManagementException e)
 {
 return null;
 }
 }
}

Override Default Hostname Verification
As part of the SSL handshake, the HTTPS layer attempts to match the hostname in the
provided URL to the hostname provided in the server certificate. If the two hostnames do

3 Security

3-6

not match, the HTTPS layer calls the HostnameVerifier.verify() method as an
additional check. The return value of the HostnameVerifier.verify() method
determines if the hostname is verified.

The implementation of the HostnameVerifier.verify() method provided by the
MWSSLDefaultConfig object always returns false. The result is that if the hostname in
the URL and the hostname in the server certificate do not match, the HTTPS handshake
fails.

For a more robust hostname verification scheme, extend the MWSSLDefaultConfig class
to return an implementation of HostnameVerifier.verify() that uses custom logic.
For example, if you only wanted to generate one certificate for all of the servers on which
MATLAB Production Server instances run, you could specify MPS for the certificate’s
hostname. Then your implementation of HostnameVerifier.verify() returns true if
the hostname stored in the certificate is MPS.

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import com.mathworks.mps.client.*;

public class MySSLConfig extends MWSSLDefaultConfig
{
 public HostnameVerifier getHostnameVerifier()
 {
 return new HostNameVerifier()
 {
 public boolean verify(String s, SSLSession sslSession)
 {
 if (sslSession.getPeerHost().equals("MPS"))
 return true;
 else
 return false;
 }
 }
 }
}

For more information on HostnameVerify see Oracle's Java Documentation.

Use Additional Server Authentication
After the HTTPS layer establishes a secure connection, a client can perform an additional
authentication step before sending requests to a server. An implementation of the

 Customize Security Configuration

3-7

https://docs.oracle.com/javase/6/docs/api/javax/net/ssl/HostnameVerifier.html

MWSSLServerAuthorizer interface performs this additional authentication. An
MWSSLSServerAuthorizer implementation performs two checks to authorize a server:

• isCertificateRequired() determines if servers must present a certificate for
authorization. If this returns true and the server has not provided a certificate, the
client does not authorize the server.

• authorize(Certificate serverCert) uses the server's certificate to determine if
the client authorizes the server to process requests.

The MWSSLSServerAuthorizer implementation returned by the MWSSLDefaultConfig
object authorizes all servers without performing any checks.

To use server authentication, extend the MWSSLDefaultConfig class and override the
implementation of getServerAuthorizer() to return a MWSSLSServerAuthorizer
implementation that does perform authorization checks.

3 Security

3-8

Data Conversion Rules

A

Conversion of Java Types to MATLAB Types
Value Passed to Java Method
is:

Input type Received by
MATLAB is:

Dimension of Data in
MATLAB is:

java.lang.Byte, byte int8 {1,1}
byte[] data {1, data.length}
java.lang.Shortshort int16 {1,1}
short[] data {1, data.length}
java.lang.Integer, int int32 {1,1}
int[] data {1, data.length}
java.lang.Long, long int64 {1,1}
long[] data {1, data.length}
java.lang.Float,float single {1,1}
float[] data {1, data.length}
java.lang.Double, double double {1,1}
double[] data {1, data.length}
java.lang.Boolean,
boolean

logical {1,1}

boolean[] data {1, data.length}
java.lang.Character, char char {1,1}
char[] data {1, data.length}
java.lang.String data {1, data.length()}
java.lang.String[] data cell {1, data.length}
java.lang.Object[] data {1, data.length}
T[] data MATLAB type for T { data.length,

dimensions(T[0]) }, if T is an
array
{ 1, data.length}, if T is not
an array

A Conversion of Java Types to MATLAB Types

A-2

Conversion of MATLAB Types to Java Types
When MATLAB Returns: Dimension of Data in

MATLAB is:
MATLAB Data Converts To
Java Type:

int8, uint8 {1,1} byte,java.lang.Byte
{1,n} , {n,1} byte[n], java.lang.Byte[n]
{m,n,p,...} byte[m][n][p]... ,

java.lang.Byte[m][n][p]...
int16, uint16 {1,1} short, java.lang.Short

{1,n} , {n,1} short[n],
java.lang.Short[n]

{m,n,p,...} short[m][n][p]... ,
java.lang.Short[m][n][p]...

int32, uint32 {1,1} int, java.lang.Integer
{1,n} , {n,1} int[n],

java.lang.Integer[n]
{m,n,p,...} int[m][n][p]... ,

java.lang.Integer[m][n]
[p]...

int64, uint64 {1,1} long, java.lang.Long
{1,n} , {n,1} long[n], java.lang.Long[n]
{m,n,p,...} long[m][n][p]... ,

java.lang.Long[m][n][p]...
single {1,1} float, java.lang.Float

{1,n} , {n,1} float[n],
java.lang.Float[n]

{m,n,p,...} float[m][n][p]... ,
java.lang.Float[m][n][p]...

double {1,1} double, java.lang.Double
{1,n} , {n,1} double[n],

java.lang.Double[n]

 Conversion of MATLAB Types to Java Types

A-3

When MATLAB Returns: Dimension of Data in
MATLAB is:

MATLAB Data Converts To
Java Type:

{m,n,p,...} double[m][n][p]... ,
java.lang.Double[m][n][p]...

logical {1,1} boolean,
java.lang.Boolean

{1,n} , {n,1} boolean[n],
java.lang.Boolean[n]

{m,n,p,...} boolean[m][n][p]... ,
java.lang.Boolean[m][n]
[p]...

char {1,1} char, java.lang.Character
{1,n} , {n,1} java.lang.String
{m,n,p,...} char[m][n][p]... ,

java.lang.Character[m][n]
[p]...

cell (containing only strings) {1,1} java.lang.String
{1,n} , {n,1} java.lang.String[n]
{m,n,p,...} java.lang.String[m][n][p]...

cell (containing multiple
types)

{1,1} java.lang.Object
{1,n} , {n,1} java.lang.Object[n]
{m,n,p,...} java.lang.Object[m][n][p]...

A Conversion of MATLAB Types to Java Types

A-4

